报告题目:Covariate-adaptive randomization in clinical trials for balancing covariates
报告人:张立新 教授 浙江大学
邀请人:冶继民
报告平台:腾讯会议ID:357-380-145
报告时间:2021-12-10上午9:00-11:00
报告人简介:浙江大学求是特聘教授。1995年获复旦大学理学博士学位,1997年晋升为教授,2001年起先后担任浙江大学统计学研究所副所长、常务副所长、所长,数学系副主任、数学科学学院副院长。现任浙江大学数据科学研究中心副主任、中国现场统计研究会常务理事、中国概率统计学会常务理事、浙江省现场统计研究会理事长。主要从事概率极限理论、相依数据模型、临床试验自适应随机化设计等领域的研究,发表了学术论文170余篇,先后主持国家自然科学基金面上项目、杰出青年基金项目和重点项目等多项项目,于2008年入选教育部“新世纪优秀人才支持计划”,2018年入选浙江省科技创新领军人才,2020年当选Institute of Mathematical Statistics Fellow。
报告摘要:Balancing treatment allocation over influential covariates is an important issue in clinical trials. In literature, a lot of covariate-adaptive designs are proposed for balancing covariates. In this talk, we consider the theory of the covariate-adaptive designs. The asymptotic relative loss of power of hypothesis testing to compare the treatment effects under covariate-adaptive randomization procedures is considered. It is shown that the test will loss power if the covariates are not balanced well. The efficient covariate-adaptive designs are introduced so that the loss of power is asymptotically ignorable.