报告题目:Wave Equation with van der Pol Boundary Condition
报 告 人:冯兆生 教授 美国德克萨斯大学RGV分校
照 片:
邀 请 人:吴事良
报告时间:2020年11月11日(周三) 10:00-11:00
腾讯会议ID: 519 624 574
报告人简介: 冯兆生,美国德克萨斯大学RGV分校理学院终身教授,德克萨斯大学杰出成就奖获得者。主要研究方向有非线性分析, 分支和混沌理论, 数学物理问题, 数值模拟和生物数学等。目前担任国际知名学术期刊Communications in Nonlinear Science and Numerical Simulation 主编和 Electronic Journal of Differential Equations 执行主编,同时担任八个(Elsevier, Springer, IOP)的国际SCI学术期刊的编委和AIMS微分方程和动力系统的系列丛书的编委。
报告摘要:In this talk, we consider the one-, two- and three-dimensional wave equation on the unit interval [0, 1] with a van der Pol type condition. This nonlinear boundary condition behaves like a van der Pol oscillator, causing the total energy to rise and fall within certain bounds regularly or irregularly. We formulate the problem in terms of an equivalent first order hyperbolic system and use the method of characteristics to derive a nonlinear reflection relation caused by the nonlinear boundary conditions. Qualitative and numerical techniques are developed to tackle the cubic nonlinearities and the chaotic regime is determined. Numerical simulations and visualizations of chaotic vibrations are illustrated by computer graphics.