学术报告

学术报告

您当前所在位置: 首页 > 学术报告 > 正文
报告时间 报告地点
报告人

报告题目: Long-time behavior of a diffusive epidemic system in heterogeneous environment

报 告 人:彭锐 教授 江苏师范大学

邀请人:吴事良 白振国 李善兵

照片:

报告时间:2020年7月6日(周一) 14:00-15:00

腾讯会议ID: 410 235 053

报告人简介:彭锐,教授,江苏省特聘教授,入选“教育部新世纪优秀人才支持计划”,获得“江苏省杰出青年基金”和“江苏省数学成就奖”,入选江苏省“333人才工程”中青年学科带头人。博士毕业于东南大学和澳大利亚新英格兰大学,曾在加拿大纽芬兰大学AARMS和美国明尼苏达大学IMA(美国NSF资助)从事博士后工作, 德国“洪堡学者”获得者。彭锐目前的主要研究兴趣包括偏微分方程、动力系统理论以及在生物学、传染病学和化学反应等领域的应用。已在Transactions of the American Mathematical Society、Journal of Functional Analysis、SIAM Journal on Mathematical Analysis、Indiana University Mathematics Journal、Journal of Nonlinear Science、Calculus of Variations and Partial Differential Equations、SIAM Journal on Applied Mathematics、Journal of Mathematical Biology、Physica D、Nonlinearity、European Journal of Applied Mathematics、Journal of Differential Equations等数学杂志发表学术论文多篇。

报告摘要: In this talk, we are concerned with an epidemic reaction-diffusion system with nonlinear incidence mechanism of the form $S^qI^p\,(p,\,q>0)$. The coefficients of the system are spatially heterogeneous and time dependent (particularly time periodic). We study the long-time behavior of the solutions of the system. Our results reveal the delicate effect of the infection mechanism, transmission rate, recovery rate and disease-induced mortality rate on the infection dynamics. Our analysis can be adapted to models with some other types of infection incidence mechanisms. This is a joint work with Yixiang Wu.

 

上一篇:Boundedness, gradient estimate, blow-up and exponential convergence in a two-species and two-stimuli chemotaxis system with/without loop

下一篇:Portfolio Diversification and Model Uncertainty: A Robust Dynamic Mean-Variance Approach

关闭