学术报告

学术报告

您当前所在位置: 首页 > 学术报告 > 正文
报告时间 2023年6月11日(周日)20:00-21:00 报告地点 腾讯会议:573-724-395
报告人 李爱军

报告题目:On the sine polarity and theLp-sine Blaschke-Santaló inequality

报告人:李爱军 教授 浙江科技学院

9914cfbf3afc5ce1c47899fff4e1536

邀请人:马如云教授

报告时间:2023年6月11日(周日)20:00-21:00

腾讯会议:573-724-395

报告摘要:This talk is dedicated to study the sine version of polar bodies and establish the Lp-sine Blaschke-Santaló inequality

for the Lp-sine centroid body. The Lp-sine centroid body$\Lambda_p K$ for a star body K is a convex body basedon the Lp-sine transform, and its associatedBlaschke-Santaló inequality provides an upper bound for thevolume of $\Lambda_p^{\circ}K$, the polar body of $\Lambda_p K$, interms of the volume of K. Thus, this inequality can be viewed asthe “sine cousin” of the Lp Blaschke-Santalóinequalityestablished by Lutwak and Zhang. As $p\rightarrow \infty$, the limit of $\Lambda_p^{\circ} K$ becomesthe sine polar body $K^{\diamond}$ and hence the Lp-sineBlaschke-Santaló inequality reduces to the sineBlaschke-Santaló inequality for the sine polar body. The sinepolarity naturally leads to a new class of convex bodies $\mathcal{C}_{e}^n$, which consists of all origin-symmetric convexbodies generated by the intersection of origin-symmetric closedsolid cylinders. Many notions in $\mathcal{C}_{e}^n$ are developed,including the cylindrical support function, the supporting cylinder,the cylindrical Gauss image, and the cylindrical hull. Based onthese newly introduced notions, the equality conditions of the sineBlaschke-Santaló inequality are settled.

报告人简介:李爱军,博士,美国纽约大学理工学院博士后,现浙江科技学院教授,硕士研究生导师,美国数学评论评论员,主要从事凸几何分析和几何不等式的研究,分别在2015和2022年应邀参加了加拿大数学年会并做报告,2019年应邀参加在清华大学举办的第八届华人数学家大会(ICCM),并做45分钟邀请报告。参与国家自然科学基金重点项目一项,主持完成国家自然科学基金项目一项,参与完成一项。先后在J. Funct. Anal.,Adv. Math., J. London Math. Soc., J. Geom. Anal., IMRN, Math. Z.等杂志上发表SCI论文三十余篇。

上一篇:弱KAM理论——及其在哈密顿-雅可比方程、平均场博弈系统中的应用

下一篇:Distributionally robust optimization with Wasserstein metric for multi-period portfolio selection under uncertainty

关闭