学术报告

学术报告

您当前所在位置: 首页 > 学术报告 > 正文
报告时间 2022年11月23日(周三)10:30-11:30 报告地点 腾讯会议ID:533-310-789,密码:123456
报告人 周超

报告题目:Large ranking games with diffusion control

报 告 人:周超 副教授 新加坡国立大学

邀请人:李童庆、薄立军

报告时间:2022年11月23日(周三)10:30-11:30

腾讯会议ID:533-310-789,密码:123456

报告人简介:周超,新加坡国立大学数学系副教授,量化金融研究中心主任。博士毕业于法国巴黎九大和巴黎综合理工大学,主要研究领域为:金融数学、随机控制。曾在The Annals of Applied Probability, The Annals of Probability, Mathematical Finance, Mathematics of Operations Research等多个国际权威的概率、金融数学杂志上发表文章。

报告摘要:We consider a symmetric stochastic differential game where each player can control the diffusion intensity of an individual dynamic state process, and the players whose states at a deterministic finite time horizon are among the best of all states receive a fixed prize. Within the mean field limit version of the game we compute an explicit equilibrium, a threshold strategy that consists in choosing the maximal fluctuation intensity when the state is below a given threshold, and the minimal intensity otherwise. We show that for large n the symmetric n-tuple of the threshold strategy provides an approximate Nash equilibrium of the n-player game. We also derive the rate at which the approximate equilibrium reward and the best response reward converge to each other, as the number of players n tends to infinity. Finally, we compare the approximate equilibrium for large games with the equilibrium of the two-player case. This talk is based on the joint work with Stefan Ankirchner, Nabil Kazi-Tani and Julian Wendt.

上一篇:Functionalequationsin mathematical fuzzy logic

下一篇:基于粒计算的分层分类特征选择方法

关闭