报告题目:List 4-colouring of planar graphs
报 告 人:朱绪鼎 教授 浙江师范大学
邀请人:张欣 副教授
报告时间:2022年4月19日(周二)14:30-15:30
腾讯会议ID:800 629 462
报告人简介:朱绪鼎,博士,教授,博士生导师,浙江师范大学特聘教授,浙江师范大学离散数学研究中心主任。1991年获加拿大University of Calgary数学博士学位,1991年至1993年在加拿大Simon Fraiser University做博士后研究,1993年至1995年在德国比勒菲尔德大学做博士后研究,1995年加入台湾中山大学应用数学系,先后聘为台湾中山大学特聘研究教授,台湾西湾讲座教授,获得台湾科学委员会杰出研究奖,台湾数学学会学术奖,主持台湾杰出学者研 究计划。2010年全职到浙江师范大学任教。研究专长是图论、演算法和组合优化。主持国家自然科学面上项目4项,浙江省自然科学重点项目1项。在国际SCI期刊发表论文250余篇,论文被引用2700余次(MathSciNet),H-index为26。二十多次应邀在重要的国际学术会议上作大会报告。现任“J. Graph Theory”,“European J. Combin.”,“Discrete. Mathematic”,“Contrib.Discrete Math”,“Discuss. Math. Graph Theory Graph Theory”,“Bulletin of Academia Sinica”,“Taiwanese Journal of Mathematics”等国际学术期刊编委。
报告摘要:It is known that there are planar graphs G and 4-list assignments L of G such that G is not L-colourable. A natural direction of research is to put restrictions on the list assignments so that for any planar graph G and any 4-list assignment L of G satisfying the restrictions, G is L-colourable. One kind of lists studied in the literature is lists with separation. A (k, s)-list assignment of G is a k-list assignment of G with |L(x) ∩ L(y )| ≤ s for each edge xy . A graph G is called (k, s)-choosable if G is L-colourable for any (k, s)-list assignment L of G. Mirzakhani constructed a planar graph G which is not (4, 3)-choosable and Kratochvíl, Tuza and Voigt proved that every planar graph is (4, 1)-choosable. A natural question (asked by Kratochvíl, Tuza and Voigt ) is whether every planar graph is (4, 2)-choosable. This question received a lot of attention, but there were not much progress. Recently, I proved that the answer to this quesiton is positive. In this lecture, I shall sketch the proof.
主办单位:伟德国际BETVlCTOR