学术报告

学术报告

您当前所在位置: 首页 > 学术报告 > 正文
报告时间 报告地点
报告人

报告题目:The Invariant Geometric Flows in Affiffiffine-related Geometries

报 告 人:屈长征 教授 宁波大学

报告时间:2021年5月14日(周五)9:00

腾讯会议ID:167 587 391

报告人简介: 屈长征教授,浙江省特级专家,国家杰出青年基金获得者。1993年在兰州大学数学系获得博士学位,先后在西北大学和香港中文大学做博士后研究,多次赴美国、加拿大、日本、德国、西班牙、新加坡和香港等十几个国家和地区访问和交流。主要从事不变几何流及其与可积系统的关系、 非线性偏微分方程的对称、 不变量、 几何性质、解的奇性及稳定性的研究, 成果发表在Comm. Math. Phys.,Adv. Math.,ARMA,Math. Ann., J. Funct. Anal., J. Math. Pure Appl.和Nonlinearity等国际著名杂志上,多次被邀请在一些重要的国内外学术会议上做报告。现任《Stud. Appl. Math.》, 《Comm. Pure Appl. Anal.》和《数学进展》编委, 是《纯粹与应用数学》杂志副主编。曾得到国家杰出青年基金、国家自然科学基金重点项目、面上项目和教育部优秀青年教师等基金的资助。研究成果曾获得陕西省科技进步一等奖、二等奖和国家教委科技进步奖等。

报告摘要: Invariant geometric flows in certain geometries have been studied extensively from different points of view. In this talk, we are mainly concerned with invariant geometric flows in centro-affine, centro-equiaffine and affine geometries. First, we show that the specific invariant geometric flows in centro-affine, centro-equiaffine and centro-affine geometries are related respectively to the well-known integrable systems. Those integrable geometric flows corresponding to some solutions of the systems will be studied. Second, the geometric formulations to integrability features of the resulting systems are addressed. Finally, we study the heat flows for curves in those geometries. Their different features of the heat flows in those geometries will be discussed.

上一篇:Damage and recovery of ARS 1400 conveyer’s lower construction support in a surface mine

下一篇:An analogue-difference method and application to induction motor models

关闭