报告题目:Asymptotic profiles of the endemic equilibrium of a reaction-diffusion-advection SIS epidemic model with saturated incidence rate
报 告 人:崔仁浩 教授 哈尔滨师范大学
照 片:
邀 请 人:李善兵
报告时间:2020年11月17日(周二) 10:30-11:30
报告地点:腾讯会议 ID:852 834 531
报告人简介:崔仁浩,哈尔滨师范大学数学科学学院教授,硕士生导师。主要从事非线性分析、偏微分方程及其应用方向的研究,在空间异性中反应扩散系统的动力学行为方面的研究取得了一定的进展,在J. Differential Equations 等学术刊物上发表论文多篇;主持完成国家自然科学基金青年项目、全国博士后基金及黑龙江省自然科学基金等项目;作为主要完成人获得黑龙江省科学技术(自然科学)二等奖一项。2018年获黑龙江省数学会第二届优秀青年学术奖。
报告摘要:We are concerned with a reaction-diffusion SIS epidemic model with saturated incidence rate in advective heterogeneous environments. The existence of the endemic equilibrium (EE) is established when the basic reproduction number is greater than one. We further investigate the effects of diffusion, advection and saturation on asymptotic profiles of the endemic equilibrium. The individuals concentrate at the downstream end when the advection rate tends to infinity. As the diffusion rate of the susceptible individuals tends to zero, a certain portion of the susceptible population concentrates at the downstream end, and the remaining portion of the susceptible population distributes in the habitat in a non-homogeneous way; on the other hand, the density of infected population is positive on the entire habitat. The density of the infected vanishes on the habitat for small diffusion rate of infected individuals or the large saturation. The results may provide some implications on disease control and prediction.