报告题目:Recollements associated to cotorsion pairs over upper triangular matrix rings
报 告 人:丁南庆 教授 南京大学
照 片:
邀 请 人:杨丹丹 李欢欢
报告时间:2020年11月14日(周六) 8:00-9:30
报告地点: 腾讯会:557344446
报告人简介:丁南庆,南京大学数学系二级教授,博士生导师,享受2002年度政府特殊津贴。曾先后获得江苏省科技进步奖、首届宝钢教育基金优秀教师奖、国家教委科技进步奖、江苏省第四届青年科技奖、第五届霍英东青年教师奖二等奖、江苏省教学成果二等奖、教育部自然科学奖二等奖、江苏省教育科学研究成果自然科学二等奖、教育部自然科学奖二等奖等诸多奖项。研究领域为同调代数、环论、模论等,已在国内外重要学术刊物上发表学术论文100余篇,主持完成多项国家自然科学基金及博士点基金项目。
报告摘要:Let $A$, $B$ be two rings and $T=\left(\begin{smallmatrix} A & M \\ 0 & B\\\end{smallmatrix}\right)$with $M$ an $A$-$B$-bimodule. Suppose that we are given two complete hereditary cotorsion pairs $(\mathcal{A}_{A},\mathcal{B}_{A})$ and $(\mathcal{C}_{B},\mathcal{D}_{B})$ in $A$-Mod and $B$-Mod respectively. We define two cotorsion pairs $(\Phi(\mathcal{A}_{A},\mathcal{C}_{B}), \mathrm{Rep}(\mathcal{B}_{A},\mathcal{D}_{B}))$ and $(\mathrm{Rep}(\mathcal{A}_{A},\mathcal{C}_{B}),\Psi(\mathcal{B}_{A},\mathcal{D}_{B}))$ in $T$-Mod and show that both of these cotorsion pairs are complete and hereditary.
If we are given two cofibrantly generated model structures $\mathcal{M}_{A}$ and $\mathcal{M}_{B}$ on $A$-Mod and $B$-Mod respectively, then using the result above, we investigate when there exists a cofibrantly generated model structure $\mathcal{M}_{T}$ on $T$-Mod and a recollement of $\mathrm{Ho}(\mathcal{M}_{T})$ relative to $\mathrm{Ho}(\mathcal{M}_{A})$ and $\mathrm{Ho}(\mathcal{M}_{B})$. Finally, some applications are given in Gorenstein homological algebra. This talk is a report on joint work with R.M. Zhu and Y.Y. Peng.