报告题目:An Introduction to Traveling Waves in Biological Systems
报 告 人:Shigui Ruan (阮士贵) 教授 美国迈阿密大学
照 片:
邀 请 人:吴事良
报告时间:2020年10月23日(周五) 20:30-21:30
腾讯会议ID:248 348 151
报告人简介:阮士贵教授,1983年本科毕业于华中师范大学数学系,1988年获得华中师范大学数学系硕士学位,1992年获得加拿大阿尔伯特大学数学系博士学位,1992-1993年在加拿大菲尔兹数学所做Junior Fellow,1993-1994年在加拿大麦克马斯特大学做博士后。1994-2002年在加拿大道尔豪斯大学数学与统计系先后任助理教授和副教授。现为美国迈阿密大学数学系终身教授。主要研究领域是动力系统和微分方程及其在生物和医学中的应用。在包括PNAS、Memoirs Amer. Math. Soc.、Tran. Amer. Math. Soc.、J. Math. Pures Appl.、Math. Ann.、SIAM系列期刊等上发表了200多篇学术论文,2014和2015年连续被汤森路透集团列为全球高被引科学家。担任了《DCDS-B》、《BMC Infectious Diseases》、《Bulletin of Mathematical Biology》、《Mathematical Biosciences》、《Scientific Reports》等学术期刊的编委,是《Mathematical Biosciences and Engineering》的主编(数学)。作为项目负责人获得美国国家卫生研究院、美国国家科学基金和中国国家自然科学基金多项资助。
报告摘要: This is an introductory talk about basic concepts, methods and results on traveling waves in biological systems described by one and two reaction-diffusion equations. For scalar biological models, traveling waves in Fisher equation (diffusive logistic equation), Fisher-KPP equation, Nagumo equation (scalar equation with Allee effect), and spruce budworm outbreak model will be introduced. For traveling waves in two-dimensional systems, we will review some results on predator-prey models, competition models, tumor growth models, FitzHugh-Nagumo nerve conduction model, and wound healing models. Methods used to study the existences and stability of traveling waves, such as phase portrait analysis, squeezing method, shooting argument, fixed point theorem, geometric singular perturbation approach, Evans function, and topological approach will be briefly explained. Some of our recent studies on traveling waves in time-dependent biological models will also be mentioned.